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ABSTRACT

Fractal functions are good choice for modeling natural textured surfaces and they have long been recognized as
important features in classifying images because the fractal dimension for a surface correlates nearly perfectly with the
perception of roughness in many situations. The use of new set of fractal features to identify visual texture is explored
in this paper. We have adopted a set of two fractal features (i.e. fractal dimension and lacunarity) for describing
different visual textures. A modified differential box counting approach for estimating these two fractal features from
image surfaces is proposed. Also, a focus on these two fractal features (parameters), with their accuracy and robustness
were evaluated. The problem of textural images description was presented. The research conducted a testing procedure
to evaluate the degree of sensitivity against the textural attributes (i.e. softness, feature size and power). The results
have shown satisfactory results, which can justify the usage of fractal features as textural discriminating criteria.
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I. INTRODUCTION

The science of fractal geometry is modern invention discovered by the polish-born French mathematician Benoit B.
Mandelbrot in the 1970s. It provides both a description and a mathematical model for many of the seemingly complex
forms and patterns in nature and sciences.

Within the last 15-30 years, fractal geometry and its concepts have become central tools in most of the natural sciences:
physics, chemistry, biology, meteorology, and material science, at the same time, fractals are of interest to computer
graphic designers and film-makers for their ability to create new and exciting shapes and artificial but are very close to
realistic worlds.

Fractal analysis, the study of complicated phenomena manifesting self-similarity at many scales, is suited to the
description of the forms and sizes of the very complicated, revealing regions homogeneously classified pixels with quite
convolutes perimeters.

Computer graphic has played an essential role in the development and rapid acceptance of fractals as a valid new
discipline. Conversely, fractal geometry now plays an important role in the rendering, modeling and three-dimensional
animation of natural phenomena and fantastic shapes in computer graphics.

The using of firactal geometry concepts in the fields of computer vision and digital image processing is considered to be
a modern fascinating and challenging field. It is fascinating because of the possibilities it offers and it is challenging
because, it is often to “understand” and “improve” unusual image aspects and properties, and this has proved to be no
simple task.

For the past 15 years, computer vision and digital image processing through fractal geometry have grown into mature
discipline. In addition, its techniques in the

Image analyses are a rapidly growing field and this is due, at least in part to recent advances in desktops and personal
computers.

The discovery of the fractal geometry expands the applications of the image processing to many problems of:
a) Representing natural shapes such as mountains, trees, and clouds, and
b) Computing their description from image data.

¢) The theory of curves and surfaces have been developed in two, three or higher dimensions for about 200 years
now. Such like shapes that globally may have very complicated external structures, but if one looks to them in small
scales, they are just straight lines or planes. The discipline that deals with such like objects is “Differential Geometry.
It is considered to be one of the most evolved and fascinating subjects in mathematics.
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On the other hand natural shapes such as coastlines, mountains, trees clouds, leaves, feathers, flowers, carpets, and
much else besides are not easily described by the above discipline. Nevertheless, they often posses a remarkable
simplifying invariance under change of magnification. It is only recently; the scientists have been able to describe the
natural shapes, because it is recently that branch of mathematics capable to describe such like complex objects were
developed.

Benoit B. Mandelbrot suggested the existence of geometrical entities near to the “geometry of nature”, thus, he coined
them “fractals” in 1970. Fractal feature is just the opposite of smoothness. While the smooth object do not yield any
more details on smaller scales a fractal possesses infinite details at all scales no matter how small they are.

Fractal, in mathematics, a geometric shape that is complex and detailed in structure at any level of magnification. Often
fractals are self-similar, that is, they have the property that each small portion of the fractal can be viewed as a reduced-
scale replica of the whole.

The fascination that surrounds fractals has two roots, they are:
1. Fractals are very suitable to simulate many natural phenomena, and
2. Fractals are simple to generate on computers.

The property of self-similarity or “scale—invariance” is one of the central concepts of firactals. A small portion of the
figure resembles some larger part, either exactly or very closely. This characteristic was discovered in a wide variety of
natural and Man-made phenomenon and traditional Euclidean shapes [Barnsley et al. 88]. Irregular sets provide a much
better representation of many natural phenomena than do the figures of classical geometry [Barnsley and Hurd 93].
Fractal geometry provides a general framework for the study of such irregular sets. Table (2.1) summarizes the major
differences between fractals and traditional Euclidean shapes.

II. FRACTAL (SIMILARITY) DIMENSION
Fractals have infinite details at all scales, so we cannot make a complete computation of a fractal and some
approximations of fractals down to some finite precision have to suffice.

An object normally considered as a line or line segment, we give it dimension (D=1), or a plane or half
plane or disk, we give it dimension (D=2), or surface or space or half space or ball, we give it dimension (D=3), we call
D the Topological Dimension.

Now let’s develop a second measure of an object’s dimension. If one takes a line of length (L) and dividing it into
(N) identical pieces each of length ~ (1=L/N). The pieces each look like the original, only scales by ratio (r=1/N) from
the whole. Similarly, a two-dimensional objects; such as a square area in the plane, can be divided into “N” self—similar

parts each of which is scaled down by a factor (r=1/+/ N). A three-dimensional object like a solid cube may be divided

into “N” little cubes each of which is scaled down by ratio (r=1/ \/3 N ) [Barnsley et al. 88].

With self-similarity the generalization to fractal dimension is straightforward. A D-dimensional self-similar object
can be divided into “N” smaller copies of itself each of which is scaled down by a factor “r” where

1
r= et )]
Rin
1
Or N=—D, ............................. 2)
T

Conversely, given a self- similar objects of “N” parts scaled by a ratio “r” from the whole, its fractal or similarity
dimension is given by:
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The fractal dimension, unlike the more familiarization of topological Euclidean dimension, need not be an integer.

Because it is unreasonable to expect a physical surface to be fractal over all scales, the only physically reasonable
definition of a “fractal surface” is a surface that may be accurately approximated by a single fractal dimension over a
range of scales [Keller et al. 87]. We shall say, therefore, that a surface is fractal if its fractal dimension is stable over a
wide range of scale, the implication being that it can be accurately approximated over that range of scales by a single
fractal function.

There are various numbers, associated with fractals, which can be used to compare them. They are generally referred to
as “fractal dimensions”’[Barnsley 93]. They are attempts to quantify a subjective feeling that we have about how
densely the fractal occupies the metric space in which it lies. The most important thing about fractal dimensions is that
they provide an objective means for comparing fractals.

Fractal dimensions are important because they can be defined in connection with real-world data, and they can be
measured approximately by means of experiments.

When a natural object or phenomenon is modeled mathematically by using a firactal dimension, it is recognized that the
object or phenomenon does not often have significant uncorrelation. In the fractal theory, a fractal dimension is
defined as a determined value (dimension) which is independent of the scale of its covering. In practice, however, the
dimension often fluctuates depending on samples used (even with same object or phenomena) and its scale. In
published works of image analyses and computer vision applications using fractal dimensions, it has been assumed that
fractal dimensions are determined and independent of scales, ignoring the practical experience [Clarke 86].

Fractal dimension is a popular parameter for explaining certain phenomena and for describing natural textures and it
represents an important feature of textural images, hence, it is used to characterize roughness and self-similarity in a
picture. This feature is used in texture description and classification, shape analysis and other computer vision and
image processing problems.

III. THE BOX COUNTING METHOD

Consider a bounded set A in Euclidean n-space. The set A is said to be self-similar when A is the union of N distinct
(non-overlapping) copies of itself, each of which has been scaled down by a ratio (r) in all coordinates. Simply the
relation gives the fractal or similarity dimension of A is,

I=Nr® or D=logN/log(lh),...(4)

Natural fractal surfaces do not, in general, possess this deterministic self- similarity. Instead, they exhibit statistical
self- similarity, that is, they are composed of N distinct subset, each of which is scaled down by a ratio r from the
original and it is identical in all statistical aspects to the scaled  original. The fractal (similarity) dimension for these
surfaces is also given by (4). While the definition of fractal dimension by self-similarity is straightforward, it is often
difficult to estimate directly from image data, However, a related measure of fractal dimension, the box dimension, can
be more easily computed from a fractal set A in R" as follows.

Suppose one can cover the set A with n-dimensional boxes of size Lmax. If the set A is scaled down by the ratio r, then
there are (N = RP) subsets, and so the number of boxes of size L = r Lmax needed to cover the whole set is given by

N@L)=1/r°=[Lmax/LP,......... )

The simplest way to estimate D from equation (5) is to divide the n-dimensional space into a grid of boxes with side
length L and to count the number of non—empty boxes. Pickover and Khorasani have utilized this method to
characterize speech graphs. If N (L) is computed for several values of L, then D can be estimated as the slope of a least
squares linear fit of the data {In (L), -In (N (L))} [Pickover and Khorasani 86].

Voss has suggested a more elegant method to estimate the fractal dimension of an image surface A. Let p (m, L) be the
probability that there are m points within a box of size L centered about an arbitrary point of A. for each value of L we
have

o 72
o JESR (O)Global Journal Of Engineering Science And Researches



[Sager,2(5): May 2015 ISSN 2348 - 8034
Impact Factor- 3.155

Where N is the number of possible points within the box. Suppose that the total number of points in the image is M. If
one overlay the image with boxes of side L, then the number of boxes with m points inside the box is (M/m) P (m, L)
[Voss 86].

Therefore, the expected total number of boxes needed to cover the whole image is

N Y (M/m)Pm,L)=M> (Vm)Pm, L) "

m=1 m=1

Hence, if we let

3

L
N @)=Y (1/m)P(m,L), .....®)

This value is also proportional to L and can be used to estimate D.

The box dimension can be calculated as follows: for every pixel in an  image of size M x N. with the largest box size
to be used set at Lax, the number of points m within each box of size L centered at the pixel (X, y, fix,y)) is counted and
recorded as m (L,x,y) . The centering and counting activity is restricted to pixels having all their neighbors inside the
image. The image is then divided into overlapping or windows. The overlap is decided by the increment between
windows. For each window, the occurrences of m (L, x, y) are accumulated over the pixels within the window and
the  probability distribution P (m, L) is obtained by dividing the accumulated occurrences of m (L, x, y) by the total
number of pixels in the windows. For digital image surface, the values for m range from 1 to L for a cube of side L.
The estimate of the fractal dimension is the slope obtained by performing a least squares fit to the data set {In (L), -In
(N (L))} with N (L) given by the above equation (8) [Keller and Chen 89].

IV. LACUNARITY & TEXTURES MEASURES

The fractal dimension of a surface images has been used as a description feature, but the fractal dimension
characterizes only part of the information in the distribution P (m, L), and therefore there may exist different
fractal sets have the same fractal dimension but have different “appearances” or “textures” corresponding to their
different distribution P (m, L) [Keller and Chen 89]. Also, simulations of fractal surfaces have shown that even though
the dimensions may remain constant, different visual textures can be achieved.

This supports the claim that the fractal dimension (D) alone does not provide sufficient information to describe
natural textures.  Although there is some difference in the values of fractal dimensions estimated for some textures,
they are not sufficient to completely distinguish these textures. Thus the fractal dimension is not sufficient to
characterize important nonfigurative texture characteristics, hence, decryption using only fractal dimensions would be
useless for some natural textures, so that additional fractal features are necessary.

As an initial step toward quantifying texture, the term lacunarity is introduced to describe that characteristic of fractals
of the same dimension with different appearances or texture. Mandelbrot has introduced the parameter lacunarity
[Mandelbrot 82]. (Lacuna in Latin means gap). Although the qualitative visual effect of changing lacunarity at fixed
fractal dimension value is quit striking, to date there have been no quantitative measurements of lacunarity.
Mandelbrot offers several alternative definitions. One derives from the width of the distribution P (m, L) at fixed L.
The most useful definition for this term being

Lac=E (M/E M))-1)?), .......... )
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Where M is the mass of the fractal set, and E (M) is the expected mass, this definition measures the discrepancy
between the fractal mass and the expected mass.

Voss suggested calculating lacunarity from the same probability distribution P (m, L) used for the estimation of
fractal dimension [Voss 86].

Letting
N
ML= > mP(m,L), . ......cc.c..... (10)
m=1
And
N 2
M2 (L= > m P(m,L),............ (11)
m=1

Lacunarity was defined as

L ML) - (NW)’

Lac2 (
(M(L))*

The probability P (m, L) contains the average information of the mass distribution of a fractal set. According to
[Mandelbrot 82], lacunarity is closely related to this distribution of mass. While the above definition of  lacunarity
works well for large texture areas, it does not provide adequate separability for smaller patches encountered in a
segmentation process. A second measure of Lacunarity, based on P(m,L), which can be used for texture description and
segmentation, was given by [Keller & Chen 89 ].

For each value of L, we have
M(L) - N(L)
M(L) + N(L)’

Lacl(L)= ————————————, .. oeeeeen (13)

Where M(L) is the average mass density within a box of side L and N(L) is proportional to the number of boxes of side
L needed to cover the fractal set. Actually, N(L) equals the number of boxes needed to cover the set divided by the total
number of pints in the set , i.e.(L) is the fraction of a box that one point occupies.

V. FRACTAL FEATURES VERSUS THE TEXTURE ATTRIBUTES
The adopted fractal features (i.c. fractal dimension and lacunarity) will be tested to be ensuring that they are sensitive
to texture attributes and, hence fore, they can be used as efficient discriminators in the texture description process.

In order to perform the fractal features evaluation a sequence of simulated fractal textures was generated by using a
ready-made software package called “The Fractal Design Painter”. The generated fractal patterns differ in three
textures attributed (i.e. power, softness and feature size), the dynamic ranges of these texture attributes are:

Feature Size ranges from 0 to 100%
Power ranges from —300% to 100%, and
Softness ranges from 0 to 100%

Taking into consideration the fact that more reliable conclusion requires considering all, as much as possible, values of
the above textures attributes. This led us to consider all

The cases listed below in table (1), these cases were categorized into three different test groups, and each group
considers the effect of one texture attribute.
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Table (1): Test groups considered in the quantitative evaluation.

Tests Softness% Power % Feature Size%
0 to 100 step S -300 0
0 to 100 step S -300 50
0 to 100 step 5 -300 100
0 to 100 step S -100 0
% 0 to 100 step S -100 50
= 0 to 100 step 5 -100 100
0 to 100 step S 100 0
0 to 100 step S 100 50
0 to 100 step 5 100 100
0 -300 to 100 step 20 0
0 -300 to 100 step 20 50
0 -300 to 100 step 20 100
50 -300 to 100 step 20 0
% 50 -300 to 100 step 20 50
= 50 -300 to 100 step 20 100
100 -300 to 100 step 20 0
100 -300 to 100 step 20 50
100 -300 to 100 step 20 100
0 -300 0 to 100 step S
50 -300 0 to 100 step S
100 -300 0 to 100 step 5
0 -100 0 to 100 step S
50 -100 0 to 100 step S
“ 100 -100 0 to 100 step 5
E 0 100 0 to 100 step 5
50 100 0 to 100 step S
100 100 0 to 100 step 5
0 -300 0 to 100 step S
50 -300 0 to 100 step S
100 -300 0 to 100 step 5
> 75
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The size of all tested textural images was 64x64 and their gray scale was 256. The total number of the tested images
was 567. The values of fractal dimension and lacunarity corresponding to each of the above 567 textural images were
estimated by using the box counting method with maximum size of the box is between 21-61

In the illustration of experimental study, we restrict the above cases to illustrate the cases listed below in table (2). This

table illustrates the selected values of the softness, power and feature size for the three test groups. It is obvious that
these groups contain 189 textural images.

Table (2): Selected cases for illustration scheme

Tests Softness% Power % Feature Size%
0 to 100 step 5 -300 50
% 0 to 100 step 5 -100 50
= 0 to 100 step 5 100 50
0 -300 to 100 step 20 50
% 50 -300 to 100 step 20 50
= 100 2300 to 100 step 20 50
50 -300 0 to 100 step 5
% 50 -100 0 to 100 step 5
= 50 100 0 to 100 step 5

The visual scenes of three of the following selected cases for textural images are presented in figures (1),(2) and (3).
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Fig. (1): The visual scene of the fractal patterns for the cases (power=-300% & softness=50%) and different
values of feature size.
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Fig. (2): The visual scene of the fractal patterns for the cases (feature size=50% & softness=100%) and different
values of power.
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Fig. (3): The visual scene of the fractal patterns for the cases (power=-100% & feature size=50%) and different
values of softness.
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Fig. (4): The effect of the texture attributes on the aspect of the fractal dimension (D) for the cases (a) power = -
300% and feature size =50% and different softness values. (b) feature size =0% , softness =50% and different
power values. (c) power =-300% and softness =50% and different feature size values.
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Fig. (5): The effect of the texture attributes on the aspect of the lacunarity (Lac2) for the cases (a) power =-300%
and feature size =50% and different softness values. (b) feature size =0% , softness =50% and different power
values. (c) power = -300% and softness =50% and different feature size values.
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VII. RESULTS & DISCUSSION

It is quit obvious that the subjective appearance of the textural properties is significantly depends on the softness,
feature size and power,. The calculation of the fractal features was performed by using the box counting method, and
the maximum size of the box was taken variable, the results, as expressed in figures (4) and (5) have shown that the
calculated fractal features i.e. fractal dimension and lacunarity are significantly differs with the variation of textural
attributes.

We noticed that the Lac2 values showed instable behavior which may be due to statistical instability arises when the
number of tested samples becomes poor.

There is also a noticeable translation and rotation invariant for all samples used in the robustness test in spite of the
random location and angle of rotation selection.

Regarding the scale invariant there are a little differences in the estimated values for fractal dimension and lacunarity,
that is as the size of the sub image changes (increase, the values of these fractal features are changed also and the reason
for that is “the real fractal set was defined to be self- similar in all scales no matter how much small or large they are,
the fractal features (including fractal dimension and lacunarity) are strongly dependant upon the concept of self-
similarity and scale—invariant, so that the results for scale-invariant are expected because of the training sub images can
not be real fractal sets”

In spite of the little variations in the values of fractal dimension and lacunarity in the case of scale-invariant, we can say
that these fractal features are robust.

These figures illustrate that the behaviors of fractal dimension and lacunarity, as a function of Lumax is different from
pattern to another. This result led the adopting to idea that the different values of fractal dimension and lacunarity (for
different box size) could be utilized to construct a fractal dimension and lacunarity feature vectors which good be
exploited as an efficient discriminating fractal feature in the segmentation, classification and description processes.

VIII. CONCLUSIONS

The texture attributes (i.e. softness, power and feature size) affects subjectively, the visual scene of the textural images;
hence changing the values of these texture attributes led to different aspects of the firactal features (fractal dimension
and Lacunarity).

The fractal feature Lacunarity Lacl shows better sensitivity to texture attributes than Lac2.

The calculated fractal features (i.e. fractal dimension and Lacunarity ) by using our modified box counting method
are very sensitive to the maximum size of the box, this led to adopting the idea of using different box size to evaluate
these fractal dimension and Lacunarify vectors as a feature vectors that can be ecasily used in the
discrimination ,segmentation and classification processes.
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