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ABSTRACT 

The aim of this paper is to design the mathematical model of groundwater flow. Groundwater is not static, it flows 

in an aquifer and its flow can be described using partial differential equation and associated initial-boundary 

conditions. The work considered three dimensional steady state groundwater flows. Then the model of groundwater 

flow in discharging an aquifer at a well and the flow of water under a dam solved using the Laplace homotopy 

perturbation method, the paper focused on groundwater flow under a dam and in discharging an aquifer at a well.  
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I. INTRODUCTION 
In the past, the main driving force for hydrogeologic studies has been the need to assess the water-supply potential 

of aquifers. During the past 20 years, however, the emphasis has shifted from water-supply problems to water-

quality problems. This has driven a need to predict the movement of contaminants through the subsurface 

environment. One consequence of the change in emphasis has been a shift in perceived priorities for scientific 

research and data collection. Formerly, the focus was on developing methods to assess and measure the water-

yielding properties of high-permeability aquifers. The focus is now largely on transport and dispersion processes, 

retardation and degradation of chemical contaminants, the effects of heterogeneity on flow paths and travel times. 

      The past 20 years or so have also seen some major technological breakthroughs in groundwater hydrology. One 

technological growth area has been in the development and use of deterministic, distributed-parameter, computer 

simulation models for analysing flow and solute transport in groundwater systems. These developments have 

somewhat paralleled the development and widespread availability of faster, larger memory, more capable, yet less 

expensive computer systems. Another major technological growth area has been in the application of isotopic 

analyses to groundwater hydrology, wherein isotopic measurements are being used to help interpret and define 

groundwater flow paths, ages, leakage, and interactions with surface water [1-4]. 

 

II. MODELS 
The word model has so many definitions and is so overused that it is sometimes difficult to discern the meaning of 

the word (Konikow and Bredehoeft, 1992 in [5]). A model is perhaps most simply defined as a representation of a 

real system or process. A conceptual model is a hypothesis for how a system or process operates. This hypothesis 

can be expressed quantitatively as a mathematical model. Mathematical models are abstractions that represent 

processes as equations, physical properties as constants or coefficient in the equations, and measures of state or 

potential in the system as variables. 

      Most groundwater models in use today are deterministic mathematical models. Deterministic models are based 

on conservation of mass, momentum, and energy and describe cause and effect relations. The underlying assumption 

is that given a high degree of understanding of the processes by which stresses on a system produce subsequent 

responses in that system, the system's response to any set of stresses can be predetermined, even if the magnitude of 

the new stresses falls outside of the range of historically observed stresses.Deterministic groundwater models 

generally require the solution of partial differential equations. Exact solutions can often be obtained analytically, but 

analytical models requirethat the parameters and boundaries be highly idealised. Some deterministic models treat the 

properties of porous media as lumped parameters (essentially, as a black box), but this precludes the representation 

of heterogeneous hydraulic properties in the model. Heterogeneity, or variability in aquifer properties, is 

characteristic of all geologic systems and is now recognised as playing a key role in influencing groundwater flow 

and solute transport. Thus, it is often preferable to apply distributed-parameter models, which allow the 
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representation of more realistic distributions of system properties. Numerical methods yield approximate solutions 

to the governing equation (or equations) through the discretisation of space and time. Within the discretised problem 

domain, the variable internal properties, boundaries, and stresses of the system are approximated. Deterministic, 

distributed-parameter, numerical models can relax the rigid idealised conditions of analytical models or lumped-

parameter models [6-10]. 

      The number and types of equations to be solved are determined by the concepts of the dominant governing 

processes. The coefficients of the equations are the parameters that are measures of the properties, boundaries, and 

stresses of the system; the dependent variables of the equations are the measures of the state of the system and are 

mathematically determined by the solution of the equations. When a numerical algorithm is implemented in a 

computer code to solve one or more partial differential equations, the resulting computer code can be considered a 

generic model. When the grid dimensions, boundary conditions, and other parameters (such as hydraulic 

conductivity and storativity), are specified in an application of a generic model to represent a particular geographical 

area, the resulting computer program is a site-specific model. The ability of generic models to solve the governing 

equations accurately is typically demonstrated by example applications to simplified problems [11-12]. 

 

III. DESIGN OF GROUNDWATER FLOW MODEL EQUATION 
The standard equations that govern groundwater flow are derived using the principle of continuity and Darcy’s law. 

Consider a three dimensional prototype volume element of a porous soil medium abstracted from an aquifer, as 

shown in the Figure 1 

 

 
Figure 1: A Typical Volume Element in a Porous Aquifer 

 

        The magnitude of the water velocity across each surface of the representative volume element changes with 

time. Typically, if the velocity at the entry surface X1 is vx, then the velocity at the exit surface X2 becomes  

𝑣𝑥 +
𝜕𝑣𝑥
𝜕𝑥

𝑑𝑥                                                  1  

 

       The net balance of flow within the representative volume element has four contributing components. Three 

components come from the net flows in the x,y and zdirections. The fourth component is due to the compressibility 

of the aquifer system, and is equal to the specific storage, abbreviated S0, multiplied by the rate of change of the 

groundwater head with respect to time. The sum of all four components is zero. Specifically, for the flow in the x-

direction we have: 

 Inflow in time t equals         vxdydzt 

Outflow in time t equals        𝑣𝑥 +
𝜕𝑣𝑥

𝜕𝑥
𝑑𝑥 𝑑𝑦 𝑑𝑧 𝛿𝑡 

 



 

 
[Tawfiq, 3(10): October 2016]                                                                                                              ISSN 2348 – 8034 
DOI- 10.5281/zenodo.160914                                                                                                         Impact Factor- 4.022 

    (C) Global Journal Of Engineering Science And Researches 

 

17 

Net balance of flow in time t equals inflow minus outflow  

vxdydzt -  𝑣𝑥 +
𝜕𝑣𝑥

𝜕𝑥
𝑑𝑥 𝑑𝑦 𝑑𝑧 𝛿𝑡   =  − 

𝜕𝑣𝑥

𝜕𝑥
𝑑𝑥 𝑑𝑦 𝑑𝑧 𝛿𝑡  

 

Similarly one shows that the net balance of flow in y and z directions are; 

vydx dz t -  𝑣𝑦 +
𝜕𝑣𝑦

𝜕𝑦
𝑑𝑦 𝑑𝑥 𝑑𝑧 𝛿𝑡   =  − 

𝜕𝑣𝑦

𝜕𝑦
𝑑𝑦 𝑑𝑥 𝑑𝑧 𝛿𝑡 

vzdx dy t -  𝑣𝑧 +
𝜕𝑣𝑧

𝜕𝑧
𝑑𝑧 𝑑𝑥 𝑑𝑦 𝛿𝑡   =  − 

𝜕𝑣𝑧

𝜕𝑧
𝑑𝑧 𝑑𝑥 𝑑𝑦 𝛿𝑡 

 

The net flow in time t due to increase in head equals  -δh Ssdx dy dz 

The sum of all four components is zero. Therefore  

− 
𝜕𝑣𝑥
𝜕𝑥

𝑑𝑥 𝑑𝑦 𝑑𝑧 𝛿𝑡 −  
𝜕𝑣𝑦

𝜕𝑦
𝑑𝑦 𝑑𝑥 𝑑𝑧 𝛿𝑡  −  

𝜕𝑣𝑧
𝜕𝑧

𝑑𝑧 𝑑𝑥 𝑑𝑦 𝛿𝑡 −  𝛿ℎS0𝑑𝑥 𝑑𝑦 𝑑𝑧 = 0    

 

By expressing the term  -δh S0dx dy dz  in the form −
𝛿h

𝛿𝑡
S𝑠  𝑑𝑥 𝑑𝑦 𝑑𝑧 𝛿𝑡    the above equation becomes   

− 
𝜕𝑣𝑥
𝜕𝑥

𝑑𝑥 𝑑𝑦 𝑑𝑧 𝛿𝑡 −  
𝜕𝑣𝑦

𝜕𝑦
𝑑𝑦 𝑑𝑥 𝑑𝑧 𝛿𝑡  −  

𝜕𝑣𝑧
𝜕𝑧

𝑑𝑧 𝑑𝑥 𝑑𝑦 𝛿𝑡 − 
𝛿ℎ

𝛿𝑡
𝑆0 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝛿𝑡 = 0    

 

Deletion of the common factor 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝛿𝑡 in the equation and noting that in the limit, 
𝛿ℎ

𝛿𝑡
 tends to 

𝜕ℎ

𝜕𝑡
 finally 

leads to the equation : 

 
𝜕𝑣𝑥
𝜕𝑥

 +  
𝜕𝑣𝑦

𝜕𝑦
 +  

𝜕𝑣𝑧
𝜕𝑧

 +
𝜕ℎ

𝜕𝑡
𝑆0 = 0                            (2) 

 

But Darcy’s law stipulates that the velocities of the hydraulic head in the x, y and z directions are, respectively,  

𝑣𝑥 = −𝐾𝑥
𝜕ℎ

𝜕𝑥
,   𝑣𝑦 = −𝐾𝑦

𝜕ℎ

𝜕𝑦
    , and  𝑣𝑧 = −𝐾𝑧

𝜕ℎ

𝜕𝑧
 3  

 

Substitution of these velocities into equation (2), and the fact that Kx, Ky and Kz are constants, results in the equation  

 𝐾𝑥

𝜕2ℎ

𝜕𝑥2
 +  𝐾𝑦

𝜕2ℎ

𝜕𝑦2
 +  𝐾𝑧

𝜕2ℎ

𝜕𝑧2
 = 𝑆0

𝜕ℎ

𝜕𝑡
                   (4) 

 

This is the general equation for three dimensional groundwater flow. 

Since T=Km  and S=S0m then (4) becomes  

 𝑇𝑥
𝜕2ℎ

𝜕𝑥2
 +  𝑇𝑦

𝜕2ℎ

𝜕𝑦2
 +  𝑇𝑧

𝜕2ℎ

𝜕𝑧2
 = 𝑆

𝜕ℎ

𝜕𝑡
                       (5) 

 

Sometime there is a source of ground water in the aquifer, such as a well. Such a source introduces a new term 

Q(x,y,z) into equation (5) giving 

 𝑇𝑥
𝜕2ℎ

𝜕𝑥2
 +  𝑇𝑦

𝜕2ℎ

𝜕𝑦2
 +  𝑇𝑧

𝜕2ℎ

𝜕𝑧2
 + 𝑄 = 𝑆

𝜕ℎ

𝜕𝑡
                (6) 

 

 

Where;  

Ki: hydraulic conductivity in the i-direction (L/T or m s
-1

)) 
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Ti   : transmissivity in the i-direction (L
2
/T) 

S   : storage coefficient (-) 

m  : thickness of aquifer (L) 

S0: specific storage coefficient (1/L) 

h: hydraulic head or simply “head” or pressure head (also known as piezometric head ) (L) 

vi: velocity in the i-direction(L/T) 

Q  : the volumetric source per unit volume (discharge rate) (L
3
/T). 

). 

 

A) In the Steady State Case  

In this case the flow is assumed to be under steady state conditions. This implies
𝜕h

𝜕𝑡
= 0. In this 

case the governing equations (5) changes from parabolic to elliptic, specifically becoming the 

Laplace equation . 

 𝑇𝑥
𝜕2ℎ

𝜕𝑥2
 +  𝑇𝑦

𝜕2ℎ

𝜕𝑦2
 +  𝑇𝑧

𝜕2ℎ

𝜕𝑧2
 = 0                                    7  

 

And equation (6) becomes  

 𝑇𝑥
𝜕2ℎ

𝜕𝑥2
 +  𝑇𝑦

𝜕2ℎ

𝜕𝑦2
 +  𝑇𝑧

𝜕2ℎ

𝜕𝑧2
 + 𝑄 = 0                            8  

 

In homogeneous soil permeability be equal for all directions, i.e.  Tx=Ty=Tz=T, therefore the 

governing equations (5), (6), (7) and (8)  become respectively: 

 

 
𝜕2h

𝜕𝑥2
 +  

𝜕2h

𝜕𝑦2
 +  

𝜕2h

𝜕𝑧2
 =

𝑆

𝑇

𝜕h

𝜕𝑡
                               (9) 

 
𝜕2h

𝜕𝑥2
 +  

𝜕2h

𝜕𝑦2
 +  

𝜕2h

𝜕𝑧2
 +

𝑄

𝑇
=

𝑆

𝑇

𝜕h

𝜕𝑡
                       (10) 

 
𝜕2h

𝜕𝑥2
 +  

𝜕2h

𝜕𝑦2
 +  

𝜕2h

𝜕𝑧2
 = 0                                       (11) 

 
𝜕2h

𝜕𝑥2
 +  

𝜕2h

𝜕𝑦2
 +  

𝜕2h

𝜕𝑧2
 +

𝑄

𝑇
= 0                              (12) 

 

IV. SOLVING SUGGESTED DESIGN 
Proceeding in same manner, the rest of the components hn(x, y, z, t) can be completely obtained and the series 

solution is thus entirely determined. Finally, we approximate the analytical solution h(x, y, z, t) by truncated series: 

In this section we solve the suggested design for govern groundwater flow model equation, now rewrite equation (9) 

as follow: 

 𝑇𝑥
𝜕2ℎ

𝜕𝑥2
 +  𝑇𝑦

𝜕2ℎ

𝜕𝑦2
 +  𝑇𝑧

𝜕2ℎ

𝜕𝑧2
 = 𝑆

𝜕ℎ

𝜕𝑡
,     𝑥, 𝑦, 𝑧 ∈ 𝑅 𝑎𝑛𝑑 𝑡 > 0 (13) 

 

With initial condition (IC): h(x,y,z,0) = f(x,y,z) 

   Where;  
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Ti   : transmissivity in the i-direction (L
2
/T) 

S   : storage coefficient  

h   :  hydraulic head or simply "head" or pressure head (also known as piezometric head ) (L) 

now, we solve equation (13) usingLaplaceHomotopy perturbation method (LHPM)as follow: 

 

Taking Laplace transform on both sides of the equation (13) and using the linearity of the Laplace transform  

𝑇𝑥   𝐿  
𝜕2h

𝜕𝑥2
 + 𝑇𝑦  𝐿  

𝜕2h

𝜕𝑦2
 + 𝑇𝑧  𝐿  

𝜕2h

𝜕𝑧2
 = 𝐿  𝑆

𝜕h

𝜕𝑡
 (14) 

 

By applying the Laplace transform differentiation property, we have 

𝑠𝑆𝐿 ℎ(𝑥, 𝑦, 𝑧, 𝑡) − 𝑆ℎ(𝑥, 𝑦, 𝑧, 0) =   𝑇𝑥   𝐿  
𝜕2h

𝜕𝑥2
 + 𝑇𝑦  𝐿  

𝜕2h

𝜕𝑦2
 + 𝑇𝑧  𝐿  

𝜕2h

𝜕𝑧2
 (15) 

 

Then we have 

𝐿 ℎ(𝑥, 𝑦, 𝑧, 𝑡) =
𝑓(𝑥, 𝑦, 𝑧)

𝑠
+  

1

𝑠𝑆
 𝑇𝑥   𝐿  

𝜕2h

𝜕𝑥2
 + 𝑇𝑦  𝐿  

𝜕2h

𝜕𝑦2
 + 𝑇𝑧  𝐿  

𝜕2h

𝜕𝑧2
  (16) 

 

Taking the inverse Laplace transform on equation (16), we get: 

 

ℎ = 𝐿−1  
𝑓

𝑠
 +

1

𝑆
𝐿−1  𝑇𝑥  

1

𝑠
𝐿  

𝜕2h

𝜕𝑥2
  + 𝑇𝑦  

1

𝑠
𝐿  

𝜕2h

𝜕𝑦2
  + 𝑇𝑧  

1

𝑠
𝐿  

𝜕2h

𝜕𝑧2
    17  

 

In the homotopy perturbation method (HPM), the basic assumption is that the solutions can be written as a power 

series in p such: 

ℎ 𝑥, 𝑦, 𝑧, 𝑡 =  𝑝𝑛ℎ𝑛 𝑥, 𝑦, 𝑧, 𝑡  18 

∞

𝑛=0

 

 

Wherep[0,1] is an embedding parameter. 

Substituting (18) in (17), we get: 

 𝑝𝑛ℎ𝑛

∞

𝑛=0

= 𝐿−1  
𝑓

𝑠
 

+
1

𝑆
𝑝𝐿−1  

𝑇𝑥
𝑠
𝐿   𝑝𝑛

∞

𝑛=0

𝜕2h𝑛

𝜕𝑥2
 +

𝑇𝑦

𝑠
𝐿   𝑝𝑛

∞

𝑛=0

𝜕2ℎ𝑛
𝜕𝑦2

 +
𝑇𝑧
𝑠
𝐿   𝑝𝑛

∞

𝑛=0

𝜕2ℎ𝑛
𝜕𝑧2

  (19) 

 

This is the coupling of the Laplace transform and the homotopy perturbation method. Comparingthe coefficient of 

like powers of p, the following approximations are obtained: 
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p0: ℎ0 𝑥, 𝑦, 𝑧, 𝑡 = 𝐿−1  
𝑓

𝑠
 

p1: ℎ1 𝑥, 𝑦, 𝑧, 𝑡 =
1

𝑆
𝐿−1  

𝑇𝑥
𝑠
𝐿  

𝜕2ℎ0

𝜕𝑥2
 +

𝑇𝑦

𝑠
𝐿  

𝜕2ℎ0

𝜕𝑦2
 +

𝑇𝑧
𝑠
𝐿  

𝜕2ℎ0

𝜕𝑧2
  

p2: ℎ2 𝑥, 𝑦, 𝑧, 𝑡 =
1

𝑆
𝐿−1  

𝑇𝑥
𝑠
𝐿  

𝜕2ℎ1

𝜕𝑥2
 +

𝑇𝑦

𝑠
𝐿  

𝜕2ℎ1

𝜕𝑦2
 +

𝑇𝑧
𝑠
𝐿  

𝜕2ℎ1

𝜕𝑧2
  

⋮
…  and so on.  

 
 
 
 

 
 
 
 

(20) 

 

 

Proceeding in same manner, the rest of the components hn(x, y, z,t) can be completely obtained and the series 

solutionis thus entirely determined. Finally, we approximate the analytical solution h(x, y, z, t) by truncated series: 

ℎ 𝑥, 𝑦, 𝑧, 𝑡 = lim
𝑁→∞

 ℎ𝑛 𝑥, 𝑦, 𝑧, 𝑡  21 

𝑁

𝑛=0

 

 

V. APPLICATIONS 

 Now we applied the above study for some important cases as follow 

Problem 1 

Suppose that h(x,y,z,0)=f(x,y,z)=ax
2
+by

2
+cz

2
+h0 ,  where a,b,c and h0 are constants. 

Then by equation (20) we get the powers of p as following: 

P
0
 :h0(x,y,z,t)=ax^2+ by^2+ cz^2+ h0 

P
1
 :h1(x,y,z,t)=(2t / S)(a Tx+ b Ty + c Tz) 

P
2
 : h2(x,y,z,t)=0 

P
3
 : h3(x,y,z,t)=0 

⁞ 

Then the solution is  

∴ ℎ 𝑥, 𝑦, 𝑧, 𝑡 = lim
𝑁→∞

 ℎ𝑛 𝑥, 𝑦, 𝑧, 𝑡 = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + ℎ0 + (
2𝑡

𝑆
)(𝑎𝑇𝑥 + 𝑏𝑇𝑦 + 𝑐𝑇𝑧)

𝑁

𝑛=0

 

Problem 2 

Suppose that h(x,y,z,0)=f(x,y,z)=d sin(ax)sin(by)sin(cz)+h0 , where a,b,c,d and h0 are constants. 

Then by equation (20) we get the powers of p as following: 

 

P
0
 :h0(x,y,z,t) = d sin(ax)sin(by)sin(cz)+h0 

P
1
 : h1(x,y,z,t) = - (d sin(ax) sin(by) sin(cz)) ( t / S )(a

2
Tx+ b

2
 Ty + c

2
Tz) 

P
2
 : h2(x,y,z,t) =  (d sin(ax) sin(by) sin(cz)) ( t

2
 / 2S

2
) (a

2
Tx+ b

2
 Ty + c

2
Tz)

2 

P
3
 : h3(x,y,z,t) =  -(d sin(ax) sin(by) sin(cz)) ( t

3
 / 3! S

3
) (a

2
Tx+ b

2
 Ty + c

2
Tz)

3 
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P
4
 : h4(x,y,z,t) =  (d sin(ax) sin(by) sin(cz)) ( t

4
 / 4!S

4
) (a

2
Tx+ b

2
 Ty + c

2
Tz)

4 

P
5
 : h5(x,y,z,t) =  -(d sin(ax) sin(by) sin(cz)) ( t

5
 / 5!S

5
) (a

2
Tx+ b

2
 Ty + c

2
Tz)

5 

⁞ 

P
n
 : hn(x,y,z,t) = (-1)

n
 (d sin(ax) sin(by) sin(cz)) (t

n
 / n!S

n
) (a

2
Tx+ b

2
 Ty + c

2
Tz)

n 

Then the solution is  

ℎ 𝑥, 𝑦, 𝑧, 𝑡 = lim
𝑁→∞

 ℎ𝑛 𝑥, 𝑦, 𝑧, 𝑡 

𝑁

𝑛=0

=   ℎ𝑛 𝑥, 𝑦, 𝑧, 𝑡 

∞

𝑛=0

=  ℎ0 +  (−1)𝑛𝑑 sin 𝑎𝑥 sin 𝑏𝑦 sin 𝑐𝑧  
𝑡𝑛

𝑛! 𝑆𝑛
 (𝑎2𝑇𝑥 + 𝑏2𝑇𝑦 + 𝑐2𝑇𝑧)𝑛

∞

𝑛=0

 

∴ ℎ 𝑥, 𝑦, 𝑧, 𝑡 = ℎ0 + 𝑑 sin 𝑎𝑥 sin 𝑏𝑦 sin 𝑐𝑧 𝑒−
𝑡
𝑆

(𝑎2𝑇𝑥+𝑏2𝑇𝑦+𝑐2𝑇𝑧) 

Problem 3 

Suppose that h(x,y,z,0)=f(x,y,z)= sin(ax)+  sin(by)+ sin(cz) + h0,  where a,b,c,d,,,and h0 

are constants. 

Then by equation (20) we get the powers of p as following: 

 

P
0
 : h0(x,y,z,t) =  sin(ax)+  sin(by)+ sin(cz) + h0 

P
1
 : h1(x,y,z,t) = - ( a

2
Tx sin(ax)+  b

2
 Ty sin(by)+ c

2
Tzsin(cz)) ( t / S ) 

P
2
 : h2(x,y,z,t) =  ( a

4
(Tx)

2
 sin(ax)+  b

4
(Ty)

2
 sin(by)+ c

4
(Tz)

2
sin(cz)) ( t

2
 / 2S

2
)  

P
3
 : h3(x,y,z,t) = - ( a

6
(Tx)

3
 sin(ax)+  b

6
(Ty)

3
 sin(by)+ c

6
(Tz)

3
sin(cz)) ( t

3
 / 3! S

3
)

 

P
4
 : h4(x,y,z,t) = - ( a

8
(Tx)

4
 sin(ax)+  b

8
(Ty)

4
 sin(by)+ c

8
(Tz)

4
sin(cz)) ( t

4
 / 4! S

4
)

 

P
5
 : h5(x,y,z,t) = - ( a

10
(Tx)

5
 sin(ax)+  b

10
(Ty)

5
 sin(by)+ c

10
(Tz)

5
sin(cz)) ( t

5
 / 5! S

5
)
 

⁞ 

P
n
 : hn(x,y,z,t) =  (-1)

n
( ( a

2n
(Tx)

n
 sin(ax)+  b

2n
(Ty)

n
 sin(by)+ c

2n
(Tz)

n
sin(cz))) (t

n
 / n! S

n
)

 

Then the solution is  
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ℎ 𝑥, 𝑦, 𝑧, 𝑡 = lim
𝑁→∞

 ℎ𝑛 𝑥, 𝑦, 𝑧, 𝑡 =  

𝑁

𝑛=0

 ℎ𝑛 𝑥, 𝑦, 𝑧, 𝑡 

∞

𝑛=0

 

=  ℎ0 +  (−1)𝑛𝜆 𝑎2𝑛(𝑇𝑥)𝑛 sin 𝑎𝑥  
𝑡𝑛

𝑛! 𝑆𝑛
 

∞

𝑛=0

+  (−1)𝑛𝛽 𝑏2𝑛(𝑇𝑦)𝑛 sin 𝑏𝑦  
𝑡𝑛

𝑛! 𝑆𝑛
  

∞

𝑛=0

+  (−1)𝑛𝛼 𝑐2𝑛(𝑇𝑧)𝑛 sin 𝑐𝑧  
𝑡𝑛

𝑛! 𝑆𝑛
 

∞

𝑛=0

 

∴ ℎ 𝑥, 𝑦, 𝑧, 𝑡 = ℎ0 + 𝜆 sin 𝑎𝑥 𝑒−
𝑡
𝑆

(𝑎2𝑇𝑥 ) + 𝛽 sin 𝑏𝑦 𝑒−
𝑡
𝑆

(𝑏2𝑇𝑦 ) + 𝛼 sin 𝑐𝑧 𝑒−
𝑡
𝑆

(𝑐2𝑇𝑧) 

VI. CONCLUSION 
The approximate analytical solution of groundwater flow equation for aquifer is designed and solved by applying 

LHPM. We see that LHPM is efficient, accurate and convenient. The combination of Homotopy perturbation 

method and Laplace transform overcomes the restriction of Laplace transform method to solve non-linear partial 

differential equation. The two important parameters viz. Hydraulic conductivity and specific yield S are considered 

in the present groundwater flow problem. The approximate analytical solution is obtained.  
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