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ABSTRACT

This paper presents a new particle swarm optimization based on nature inspired dynamic inertia weight (PSO-
NIDIW) for solving economic power dispatch problems. NIDIW which mimics the social behavior of humans is
proposed to cogently balance the global exploration and local exploitation abilities for PSO. In each iteration during
the run, each particle can select appropriate weight according to its situation. The performance of the PSO algorithm
is improved by this fine strategy of naturally adjusting dynamic inertia weight. The economic load dispatch (ELD) is
formulated as a nonlinear constrained optimization problem with equality and inequality constraints. The results
obtained by the PSO-NIDIW are analyzed statistically in terms of solution quality and computation efficiency with
genetic algorithm (GA) and PSO for various power systems. The statistical analyses disclose that PSO-NIDIW is an
ultimate method to solve economic power load dispatch problems as it provides higher solution quality in
comparison with other optimization algorithms.

Keywords: Particle Swarm Optimization, Dynamic Inertia Weight, Economic Load Dispatch.

I. INTRODUCTION

The main aim of economic load dispatch (ELD) is to minimize the total generation cost of generation units, while
satisfying several equality and inequality constraints. Due to the physical limitations of generators, generating units
have prohibited operating zones (POZs). The optimum dispatch of power generating units leads to saving of
substantial amount of power and money.

An extensive category of classical and artificial intelligence methods has been applied to solve the ELD problems.
The Classical and gradient based methods include linear programming, A-iteration method [1], gradient method [2],
branch and bound [3], quadratic programming [4]. The ELD problem becomes discontinuous one due to the
presence of POZs and multiple fuels [5]. As gradient methods are applicable for smooth and continuous functions,
it is difficult to solve the ELD problems. Modified gradient methods such as dimensional steepest decline method [5]
and Big-M method [6] have been developed. But these methods involve additional computation to account the
modifications. The dynamic programming method can be used to generate global solutions for the nonlinear and
discrete cost curves of the generation units [7]. Nevertheless, dynamic programming has the drawback of curse of
dimensionality that worsens for large scale problems and results in higher computation time.

The heuristic optimization techniques (HOTSs) can be classified into several categories like evolutionary algorithms,
swarm intelligence techniques and immune algorithms. Swarm intelligence techniques are inspired by the flocking
behavior of birds, bees and bats. The HOTs include genetic algorithm (GA) [8,9], Evolutionary Programming (EP)
[10], Particle Swarm Optimization (PSO) and its variants [11-15], neural networks [16,17], Differential Evolution
(DE) [18] Firefly Algorithm (FA) [19], Bat Algorithm [20], Differential Search algorithm [21], and Artificial
BeeColony Algorithm (ABC) [22] have been applied to solve the ELD problem.

The recent advancement in HOTs is to amend the existing algorithms by dynamically adapting the parameters which
enhance the performance of the algorithm to improve diversity and avoid premature convergence [23-26]. In this
research article, a new particle swarm optimization with nature inspired inertia weight (PSO-NIDIW) is developed
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to solve the ELD problem of power systems. In PSO-NIDIW, the inertia weight is naturally adapted on the basis of
the improvement in the best fitness of the particles as the search process progresses. The NIDIW controls the
exploitation and exploration ability of the PSO algorithm. Two test systems have been solved by PSO-NIDIW to
demonstrate its performance. The PSO-NIDIW is easy to implement and exhibits promising results.

The rest of the paper is organized as follows. Section 2 describes the ELD problem formulation, Section 3

introduces the PSO-NIDIW algorithm, and Section 4 explains its application to the ELD problem. Section 5 presents
the results of the PSO-NIDIW applied to two test systems, and Section 6 concludes the paper.

II. PROBLEM FORMULATION OF ELD PROBLEM

The objective of ELD problem is to find an optimal power generation schedule while minimizing fuel cost and also
satisfying various power system operating constraints.

A. Objective function
The ELD problem is formulated as follows:

ng
Minimize F = Z F,(P,) (1)
i=1
The total fuel cost of the generators is defined by:
F(P)=a;P} +bP, +C, )
Where, F, total fuel cost of the generators

a;, b;,c; cost coefficients of generator i.

B. Problem Constraints
1) Power balance constraints

The total power output of the generators must be equal to the sum of power demands and total transmission
losses and is given by:

ng
D P =P, +P )
i=1
The transmission losses are expressed as
ng ng ng
P =>" > PB, P+ > BuP +By, )
=l j=1 i=1
Where, Pp power demand
PL transmission losses
Bij line loss coefficients

1) Generator capacity constraints
The output power of each unit needs to be restricted with inequality constraints between lower and upper bounds.
This constraint is represented by

Pi,min < Pi < Pi,max (5)
Where, P,

: min > P minimum and maximum generation of uniti.

i,max

3) Ramp rate constraints
The actual operating range of all the generating units is limited by the ramp-rate constraint and is given as follows:

P, - P <UR, (6)
Where, P,, Pi0 current and previous power output of i unit respectively
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UR;,DR; up and down ramp limits of i’ unit respectively

4) Prohibited operating zone

Prohibited operating zones in the input—output curve of generator are due to steam valve operation or
vibration in its shaft bearing. For units with prohibited operating zones, there are additional constraints on the unit
operating range:

Pi,min < Pi < Pl
PL <P <P k=2,...nz
PiH‘nz < Pi < Pi,max
Where, k index of prohibited zone
nz number of prohibited zones of unit i
Pi’Lk , Pﬁ( lower and upper limits of kth prohibited zone of generator i

II. REVIEW OF PSO AND PSO-NIDIW

A. Particle swarm optimization

PSO is a population-based optimization paradigm which models the social behavior of birds flocking or fish
schooling for food. It works with a population of potential solutions rather than with a single individual and the
solutions are flown through hyperspace and are accelerated towards better or more optimum solutions. Its paradigm
is implemented in simple form of computer codes and computationally inexpensive in terms of both memory
requirements and speed. The higher dimensional space calculations of the PSO concept are performed over a series
of time steps. The population is responding to the quality factors of the previous best individual values and the
previous best group values. This approach can be used to solve many of the same kinds of problems as GA, and does
not suffer from some of GAs difficulties. It has also been found to be vigorous in solving non-linear, non-differential
and high-dimensional problems.

PSO consists of a swarm of particles moving in the D-dimensional space of possible problem solutions. Each
particle embeds the relevant information regarding the D decision variables and is associated with a fitness that
provides an indication of its performance in the objective space. Each particle i has a position X ; =[X i 1, X ;2 ....X

i, p] and a flight velocity Vi=[V i1, Vi2...... V i p] . Moreover, a swarm contains each particle i own best position
pbesti = (pbest;, 1, pbesti2, ....... , pbesti p) found so far and a global best particle position gbest = (gbest;,
gbest;, ....... , gbestp) found among all the particles in the swarm so far.In essence, the trajectory of each particle is

updated according to its own flying experience as well as to that of the best particle in the swarm.

The standard PSO algorithm can be described as
Vid“'=W x Vi4¢5+ C; x rand; x (pbest; &~ X i ¢) + Cz x randax (gbestsk — X i 45 (7)

Xid = Xid+ Vi i=1,2......... ,n;d=1,2.......... ,D 8)

Where W is a inertia weighting factor; C; is a cognition acceleration factor; C» is a social acceleration factor;
rand; and rand; are two random numbers uniformly distributed between 0 and 1; Viq« is the velocity of particle i at
iteration k; Xiq« is the dth dimension position of particle i at iteration k; pbesti, & is the dth dimension of the own
best position of particle i until iteration k; gbestd® is the dth dimension of the best particle in the swarm at iteration k.

The time varying weighting function was introduced in as per which W is given by
W=W mnax - (W max— W min) Xt/ 1t max (9)
Where W max and W min  initial and final weight respectively,

tand t max current and maximum iteration numbers.
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The model using Eq. (9) is called ‘inertia weights approach (IWA)’. The inertia weight is employed to control the
impact of the previous history of velocities on the current velocity. Thus, the parameter W regulates the trade-off
between the global and the local exploration abilities of the swarm. A large inertia weight facilitates exploration,
while a small one tends to facilitate exploitation.

B. Particle swarm optimizer with nature inspired dynamic inertia weight (PSO-NIDIW)

In this paper, a greedy approach is used to self-adopt the inertia weight factor in PSO algorithm [23]. The inertia
weight is updated at each iteration rendering to the improvement in the best fitness. This approach mimics the
human behavior that “a success of one’s act increases one’s self-possession, while a failure decreases it”. In this
adaptation strategy, the inertia weight should be increased for better fit particles and vice versa. When the algorithm
starts with larger inertia weight values, the strong exploration behavior is achieved among the swarms. In contrast,
smaller inertia weight at the final generation of the algorithm leads the swarms to search better solution in the
smaller region. The inertia weight is taken as a function of generation number and is updated as follows:

w(t+1)=09 ift=0
=F(t-1)- F(t) ift>0
Where W(z+1) inertia weight at (t +1)™ iteration

F(t)  objective value at t™ iteration.

When using this greedy approach, the oscillations in inertia weight are larger at initial generations of swarms which
help the swarm in sustaining the diversity and resulting in good exploration. Thus, the particles fly through the entire
search space quickly. Towards the final generation, the inertia weight oscillations become smaller which facilitate
fine tuning of the solution. When the inertia weight is zero for many successive iterations, the cognitive and social
components stuck with the suboptimum solutions and also decelerates the search process. If the swarm trapped for
consecutive iterations, some inertia is given to increase the diversity. Thus, the inertia factor is modified as follows

w(t+1)=09 if t=0(10)
=F(t-1)-F() if >0
:Wmax_(Wmax_Wmin)XL ifW:()

max

III. SOLUTION OF ELD PROBLEMS WITH PSO-NIDIW

The process of the PSO-NIDIW algorithm for solving ELD problems can be summarized as follows:

Step 1: Initialization of the swarm
Since the decision variables are real power generationsfor the ELD problems, they are used to form the
swarm. The real power output of all generators is represented as the particle’s positions in the swarm. Each
element of the swarm is initialized by a uniform probability distribution function in the range [0 — 1] and
located between the upper and the lower operating limits of the generators.

Step 2: Evaluation of velocity
The velocities of the particles are generated randomly in the range [- V™ V]

Step 3: Defining the evaluation function
The constrained optimization problem uses the concept of penalty function to handle constraints. The
penalty function method employs fitness functions in proportion to the magnitude of the constraint violation.
The penalty parameters are selected carefully to distinguish between feasible and infeasible solution. The
evaluation function is defined as follows

ng ng 2 ng 2
f®)=>] E-(P,-)M{Z P,-—PD—PL} +ﬂ{z P, (violation )} (11

i=1 i=1

i=1
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Where o and B are penalty factors for real power balance and POZ constraints, and Pj(violation) is an
indicator of falling into the POZ.
Step 4: Initialization of pbest and gbest
The fitness values obtained by Eq. (11) for the initial particles of the swarm are set as the initial pbest values
of the particles. The best value among all the pbest values is ascertained as gbest.
Step 5: Updating of NIDIW factor
The nature inspired dynamic inertia weight factor is calculated using Eq. (10)
Step 6: Updating of particles velocity
In the PSO-NIDIW, new velocities for all the dimensions in each particle are updated using Eq. (7).
Step 7: Updating of particles’ position
The new position of the particles is updated using Eq. (8) and then pbest and gbest valuesare updated.
Step 7: Stopping criteria
Check the termination condition. If the maximum iteration number is reached, then the IPSO is terminated
and output the optimal results. Otherwise, the procedure is repeated from Step 4.

IV. TEST RESULTS AND ANALYSIS

To test the effectiveness of the PSO-NIDIW approach, two different test systems have been solved. The results
obtained are compared with the GA and PSO. To compare the performance of the PSO-NIDIW approach, 50
independent trial runs are made and the results of the maximum, minimum and mean fuel costs are tabulated for
each test system. The number of particles in the swarm is 40 and the maximum number of iterations is 100 for the
two test systems. The programs are implemented in MATLAB.

A. Case study I: 6-unit system

This is a small system comprising six generators and satisfying a load demand of 1263 MW, and includes
transmission loss, POZ and ramp rate limits. The system data of this test case is presented in Table 1. Table 3
depicts the optimal generation schedule and total generation cost obtained by GA, PSO and PSO-NIDIW approaches.
It is found from the Table that the proposed PSO-NIDIW approach provides lesser fuel cost than the other
approaches.

Table 1. System data for 6-units

Unit(i) | Pi™ P;min a; bi Ci PUR PDR piPrev POZs
1 100 500 240 7.0 0.0070 80 120 440 [210,240],[350,380]
2 50 200 200 10.0 0.0095 50 90 170 [90,110],[140,160]
3 80 300 220 8.5 0.0090 65 100 200 [150,170],[210,240]
4 50 150 200 11.0 0.0090 50 90 150 [80,901,[110,120]
5 50 200 220 10.5 0.0080 50 90 190 [90,110],[140,150]
6 50 120 190 12.0 0.0075 50 90 110 [75,85],[100,105]

Table 2.System data for 15-units

Unit(i) | Py™* P;min aj bi Ci PUR | PDR P;prey POZs
1 150 455 671 | 10.1 | 0.000299 80 120 400
2 150 455 574 | 10.2 | 0.000183 80 120 300 [185,225],[305,335],[420,450]
3 20 130 374 | 8.80 | 0.001126 | 130 | 130 105
4 20 130 374 | 8.80 | 0.001126 | 130 | 130 100
5 150 470 461 | 10.4 | 0.000205 80 120 90 [180,2001,[305,335],[390,420]
6 135 460 630 | 10.1 | 0.000301 80 120 400 [230,255],[365,395],[430,455]
7 135 465 548 | 9.80 | 0.000364 80 120 350
8 60 300 227 | 11.2 | 0.000338 65 100 95
9 25 162 173 | 11.2 | 0.000807 60 100 105
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10 25 160 175 | 10.7 | 0.001203 60 100 110

11 20 80 186 | 10.2 | 0.003586 80 80 60

12 20 80 230 | 9.90 | 0.005513 80 80 40 [30,40],[55,65]

13 25 85 225 | 13.1 | 0.000371 80 80 30

14 15 55 309 | 12.1 | 0.001929 55 55 20

15 15 55 323 | 12.4 | 0.004447 55 55 20

Table 3. Best solution for 6-unit system
Unit (MW) GA PSO PSO-NIDIW
P 474.8066 447.4970 434.4340
P 178.6363 173.3221 173.4276
P3 262.2089 263.4745 274.2358
Py 134.2826 139.0594 128.4132
Ps 151.9039 165.4761 179.5051
Ps 74.1812 87.1280 85.7725
PL 13.0217 12.9584 12.9572
Minimum cost 15,459 15,450 15,449
($/hr)

Table 4. Results obtained by various methods for 6-unit system

Compared items GA PSO PSO-NIDIW
Max. cost 15524 15492 15490
Min. cost 15,459 15,450 15,449
Mean cost 15469 15454 15449

CPU time (sec) 41.89 14.89 15.73

Moreover, the statistical results of the minimum, maximum and mean fuel cost obtained by various approaches are
compared. From Table 4, it is evident that the proposed PSO-NIDIW approach outperforms the other approaches.

B. Case study I1: 15-unit system
This is a slightly larger test system, and consists of the 15 generating units. The transmission losses and prohibited
operating zone are considered. The total load demand of the system is 2630 MW. The generator coefficients,
capacity limits ramp rate limits and prohibited zones are given in Table 4. The optimal generation schedule, cost and
power loss obtained by the proposed PSO-NIDIW approach are compared with GA and PSO approaches in Table 5.
Furthermore, the statistical results of 50 independent trials for the 15-unit system are tabulated in Table 6. The
comparative results clearly show that the proposed PSO-NIDIW approach is proficient of producing higher quality
solution than the other evolutionary methods.

il JESR

Table 5. Best solution for 15-unit system

Unit (MW) GA PSO PSO-NIDIW
P 41531 439.12 454.99
P> 359.72 407.97 380
Ps 104.42 119.63 129.99
P, 74.98 129.99 130
Ps 380.28 151.07 169.568
Ps 426.79 459.99 460
P; 341.32 425.56 429.98
Ps 124.79 98.56 78.1358
Py 133.14 113.49 52.374
Pio 89.26 101.11 157.564
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Pu 60.06 33.91 79.92
| P 50.0 79.96 79.906
Pi3 38.77 25.0 25.633
P 41.94 41.41 16.539
Pis 22.64 35.61 15.3854
PL 38.2782 32.4306 31.964
Minimum cost 33113 32858 32760
($/hr)

Table 6. Results obtained by various methods for 15-unit system
Compared items GA PSO PSO-NIDIW
Max. cost 33337 33331 33322
Min. cost 33113 32858 32760
Mean cost 33228 33039 33028
CPU time (sec) 49.31 26.59 28.34
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Figurel. Convergence behavior of PSO-NIDIW for 15-unit system

C. Convergence characteristics
Figure. 1 shows that the PSO-NIDIW approach has good convergence property, thus resulting in good evaluation
value and low generation cost.

V. CONCLUSION

In this paper, nature inspired dynamic inertia weight based PSO algorithm (PSO-NIDIW) for solving the economic
load dispatch (ELD) has been investigated. The PSO-NIDIW approach has been tested on two test systems and the
obtained results are compared with GA and PSO approaches. The statistical analyses show that the proposed PSO-
NIDIW approach improves the performance of PSO algorithm significantly in terms of solution quality,
convergence speed and computational effort. The PSO-NIDIW approach can be extended to solve other
optimization problems in the area of power systems. Comparative study of adaptive strategies to other HOTs could
also be a good research area for future work.
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