APPLICATION OF KAMAL TRANSFORM FOR SOLVING POPULATION GROWTH AND DECAY PROBLEMS
Sudhanshu Aggarwal1, Anjana Rani Gupta2, Nirbhaya Asthana3 & D.P. Singh4
1Assistant Professor, Department of Mathematics, National P.G. College Barhalganj, Gorakhpur-273402, U.P., India
2Professor, Department of Mathematics, Noida Institute of Engineering & Technology, Greater Noida-201306, U.P., India
3,4Assistant Professor, Department of Botany, National P.G. College Barhalganj, Gorakhpur-273402, U.P., India

ABSTRACT
The population growth and decay problems arise in the field of chemistry, physics, biology, social science, zoology etc. In this paper, we used Kamal transform for solving population growth and decay problems and some applications are given in order to demonstrate the effectiveness of Kamal transform for solving population growth and decay problems.

Keywords: Kamal transform, Inverse Kamal transform, Population growth problem, Decay problem, Half-life.

I. INTRODUCTION
The population growth (growth of a plant, or a cell, or an organ, or a species) is governed by the first order linear ordinary differential equation [1-10]
\[\frac{dN}{dt} = kN \]
with initial condition as \[N(t_0) = N_0 \]
where \(k \) is a positive real number, \(N \) is the amount of population at time \(t \) and \(N_0 \) is the initial population at time \(t_0 \). Equation (1) is known as the Malthusian law of population growth.

Mathematically the decay problem of the substance is defined by the first order linear ordinary differential equation [7, 9-10]
\[\frac{dN}{dt} = -kN \]
with initial condition as \[N(t_0) = N_0 \]
where \(N \) is the amount of substance at time \(t \), \(k \) is a positive real number and \(N_0 \) is the initial amount of the substance at time \(t_0 \).

In equation (3), the negative sign in the R.H.S. is taken because the mass of the substance is decreasing with time and so the derivative \(\frac{dN}{dt} \) must be negative.
The Kamal transform of the function $F(t)$ is defined as [11]:

$$K\{F(t)\} = \int_{0}^{\infty} F(t) e^{-\frac{t}{v}} dt = G(v), \quad t \geq 0, k_1 \leq v \leq k_2$$

where K is Kamal transform operator.

The Kamal transform of the function $F(t)$ for $t \geq 0$ exist if $F(t)$ is piecewise continuous and of exponential order. These conditions are only sufficient conditions for the existence of Kamal transform of the function $F(t)$.

The aim of this work is to finding the solution of population growth and decay problems using Kamal transform without large computational work.

II. LINEARITY PROPERTY OF KAMAL TRANSFORM [17-18]

If $K\{F(t)\} = H(v)$ and $K\{G(t)\} = I(v)$ then $K\{aF(t) + bG(t)\} = aK\{F(t)\} + bK\{G(t)\}$

$$\Rightarrow K\{aF(t) + bG(t)\} = aH(v) + bI(v),$$

where a, b are arbitrary constants.

III. KAMAL TRANSFORM OF SOME ELEMENTARY FUNCTIONS [15-18]

<table>
<thead>
<tr>
<th>S.N.</th>
<th>$F(t)$</th>
<th>$K{F(t)} = G(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>v</td>
</tr>
<tr>
<td>2.</td>
<td>t</td>
<td>v^2</td>
</tr>
<tr>
<td>3.</td>
<td>t^2</td>
<td>$2!v^3$</td>
</tr>
<tr>
<td>4.</td>
<td>$t^n, , n \in \mathbb{N}$</td>
<td>$n! , v^{n+1}$</td>
</tr>
<tr>
<td>5.</td>
<td>$t^n, , n > -1$</td>
<td>$\Gamma(n+1) , v^{n+1}$</td>
</tr>
<tr>
<td>6.</td>
<td>e^{at}</td>
<td>$\frac{v}{1 - av}$</td>
</tr>
<tr>
<td>7.</td>
<td>$\sin at$</td>
<td>$\frac{av^2}{1 + a^2 v^2}$</td>
</tr>
<tr>
<td>8.</td>
<td>$\cos at$</td>
<td>$\frac{v}{1 + a^2 v^2}$</td>
</tr>
<tr>
<td>9.</td>
<td>$\sinh at$</td>
<td>$\frac{av^2}{1 - a^2 v^2}$</td>
</tr>
<tr>
<td>10.</td>
<td>$\cosh at$</td>
<td>$\frac{v}{1 - a^2 v^2}$</td>
</tr>
</tbody>
</table>
IV. INVERSE KAMAL TRANSFORM [15-18]

If $K\{F(t)\} = G(v)$ then $F(t)$ is called the inverse Kamal transform of $G(v)$ and mathematically it is defined as $F(t) = K^{-1}\{G(v)\}$, where K^{-1} is the inverse Kamal transform operator.

V. LINEARITY PROPERTY OF INVERSE KAMAL TRANSFORM

If $K^{-1}\{H(v)\} = F(t)$ and $K^{-1}\{I(v)\} = G(t)$ then

$K^{-1}\{aH(v) + bI(v)\} = aF(t) + bG(t)$, where a, b are arbitrary constants.

VI. INVERSE KAMAL TRANSFORM OF SOME ELEMENTARY FUNCTIONS [15-18]

<table>
<thead>
<tr>
<th>S.N.</th>
<th>$G(v)$</th>
<th>$F(t) = K^{-1}{G(v)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>v</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>v^2</td>
<td>t</td>
</tr>
<tr>
<td>3.</td>
<td>v^3</td>
<td>$t^2/2!$</td>
</tr>
<tr>
<td>4.</td>
<td>$v^{n+1}, n\in\mathbb{N}$</td>
<td>$t^n/n!$</td>
</tr>
<tr>
<td>5.</td>
<td>$v^{n+1}, n > -1$</td>
<td>$\Gamma(n+1)/e^{at}$</td>
</tr>
<tr>
<td>6.</td>
<td>$v/(1-av)$</td>
<td>$\sin(at)/a$</td>
</tr>
<tr>
<td>7.</td>
<td>$v^2/(1+a^2v^2)$</td>
<td>$\cos(at)$</td>
</tr>
<tr>
<td>8.</td>
<td>$v^2/(1-a^2v^2)$</td>
<td>$\sinh(at)/a$</td>
</tr>
<tr>
<td>9.</td>
<td>$v^2/(1-a^2v^2)$</td>
<td>$\cosh(at)$</td>
</tr>
</tbody>
</table>

VII. KAMAL TRANSFORM OF THE DERIVATIVES OF THE FUNCTION $F(t)$ [11]

If $K\{F(t)\} = G(v)$ then

a) $K\{F'(t)\} = 1/v G(v) - F(0)$

b) $K\{F''(t)\} = 1/v^2 G(v) - 1/v F(0) - F'(0)$

c) $K\{F^{(n)}(t)\} = 1/v^n G(v) - 1/v^{n-1} F(0) - 1/v^{n-2} F'(0) - \ldots - F^{(n-1)}(0)$

VIII. KAMAL TRANSFORM FOR POPULATION GROWTH PROBLEM

In this section, we present Kamal transform for population growth problem given by (1) and (2). Applying the Kamal transform on both sides of (1), we have

$K\left(\frac{dN}{dt}\right) = kK\{N(t)\}$ (5)
Now applying the property, Kamal transform of derivative of function, on (5), we have
\[
\frac{1}{v} K\{N(t)\} - N(0) = kK\{N(t)\} \ldots \ldots \ldots (6)
\]

Using (2) in (6) and on simplification, we have
\[
\left(\frac{1}{v} - k\right) K\{N(t)\} = N_0
\]
\[
\Rightarrow K\{N(t)\} = \frac{vN_0}{(1 - kv)} \ldots \ldots \ldots \ldots \ldots (7)
\]

Operating inverse Kamal transform on both sides of (7), we have
\[
N(t) = N_0 K^{-1}\left\{\frac{v}{(1 - kv)}\right\} = N_0 e^{kt} \ldots \ldots \ldots (8)
\]

which is the required amount of the population at time \(t \).

IX. KAMAL TRANSFORM FOR DECAY PROBLEM

In this section, we present Kamal transform for decay problem which is mathematically given by (3) and (4).

Applying the Kamal transform on both sides of (3), we have
\[
K\left\{\frac{dN}{dt}\right\} = -kK\{N(t)\} \ldots \ldots \ldots \ldots \ldots (9)
\]

Now applying the property, Kamal transform of derivative of function, on (9), we have
\[
\frac{1}{v} K\{N(t)\} - N(0) = -kK\{N(t)\} \ldots \ldots \ldots (10)
\]

Using (4) in (10) and on simplification, we have
\[
\left(\frac{1}{v} + k\right) K\{N(t)\} = N_0
\]
\[
\Rightarrow K\{N(t)\} = \frac{vN_0}{(1 + kv)} \ldots \ldots \ldots \ldots \ldots (11)
\]

Operating inverse Kamal transform on both sides of (11), we have
\[
N(t) = N_0 K^{-1}\left\{\frac{v}{(1 + kv)}\right\}
\]
\[
\Rightarrow N(t) = N_0 e^{-kt} \ldots \ldots \ldots \ldots \ldots \ldots (12)
\]

which is the required amount of substance at time \(t \).

X. APPLICATIONS

In this section, some applications are given in order to demonstrate the effectiveness of Kamal transform for solving population growth and decay problems.

Application:1 The population of a city grows at a rate proportional to the number of people presently living in the city. If after two years, the population has doubled, and after three years the population is 20,000, estimate the number of people initially living in the city.

This problem can be written in mathematical form as:
\[
\frac{dN(t)}{dt} = kN(t) \ldots \ldots \ldots \ldots \ldots \ldots (13)
\]
where \(N \) denote the number of people living in the city at any time \(t \) and \(k \) is the constant of proportionality. Consider \(N_0 \) is the number of people initially living in the city at \(t = 0 \).

Applying the Kamal transform on both sides of (13), we have
\[
K \left\{ \frac{dN(t)}{dt} \right\} = kK[N(t)] \ldots (14)
\]

Now applying the property, Kamal transform of derivative of function, on (14), we have
\[
\frac{1}{v}K[N(t)] - N(0) = kK[N(t)] \ldots (15)
\]

Since at \(t = 0, N = N_0 \), so using this in (15), we have
\[
\frac{1}{v}K[N(t)] - N_0 = kK[N(t)] \\
\Rightarrow \left(\frac{1}{v} - k \right) K[N(t)] = N_0 \\
\Rightarrow K[N(t)] = \frac{vN_0}{(1 - kv)} \ldots (16)
\]

Operating inverse Kamal transform on both sides of (16), we have
\[
N(t) = N_0 K^{-1} \left\{ \frac{v}{(1 - kv)} \right\} = N_0 e^{kt} \ldots \ldots \ldots \ldots (17)
\]

Now at \(t = 2, N = 2N_0 \), so using this in (17), we have
\[
2N_0 = N_0 e^{2k} \\
\Rightarrow e^{2k} = 2 \\
\Rightarrow k = \frac{1}{2} \times \log_e 2 = 0.347 \ldots (18)
\]

Now using the condition at \(t = 3, N = 20,000 \), in (17), we have
\[
20,000 = N_0 e^{3k} \ldots (19)
\]

Putting the value of \(k \) from (18) in (19), we have
\[
20,000 = N_0 e^{3 \times 0.347} \\
\Rightarrow 20,000 = 2.832N_0 \\
\Rightarrow N_0 \approx 7062 \ldots (20)
\]

which are the required number of people initially living in the city.

Application:2 A radioactive substance is known to decay at a rate proportional to the amount present. If initially there is 100 milligrams of the radioactive substance present and after two hours it is observed that the radioactive substance has lost 10 percent of its original mass, find the half life of the radioactive substance.

This problem can be written in mathematical form as:
\[
\frac{dN(t)}{dt} = -kN(t) \ldots (21)
\]

where \(N \) denote the amount of radioactive substance at time \(t \) and \(k \) is the constant of proportionality. Consider \(N_0 \) is the initial amount of the radioactive substance at time \(t = 0 \).

Applying the Kamal transform on both sides of (21), we have
\[
K \left\{ \frac{dN(t)}{dt} \right\} = -kK[N(t)] \ldots (22)
\]
Now applying the property, Kamal transform of derivative of function, on (22), we have

\[\frac{1}{v}K\{N(t)\} - N(0) = -kK\{N(t)\} \quad \cdots \quad (23) \]

Since at \(t = 0, N = N_0 = 100 \), so using this in (23), we have

\[\frac{1}{v}K\{N(t)\} - 100 = -kK\{N(t)\} \]

\[\Rightarrow \left(\frac{1}{v} + k \right) K\{N(t)\} = 100 \]

\[\Rightarrow K\{N(t)\} = \frac{100v}{(1 + kv)} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (24) \]

Operating inverse Kamal transform on both sides of (24), we have

\[N(t) = 100K^{-1}\left\{ \frac{v}{(1 + kv)} \right\} \]

\[\Rightarrow N(t) = 100e^{-kt} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (25) \]

Now at \(t = 2 \), the radioactive substance has lost 10 percent of its original mass 100 mg so \(N = 100 - 10 = 90 \), using this in (25), we have

\[90 = 100e^{-2k} \]

\[\Rightarrow e^{-2k} = 0.90 \]

\[\Rightarrow k = -\frac{1}{2}(\log e 0.90) = 0.05268 \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (26) \]

We required \(t \) when \(N = \frac{N_0}{2} = \frac{100}{2} = 50 \) so from (25), we have

\[50 = 100e^{-kt} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (27) \]

Putting the value of \(k \) from (26) in (27), we have

\[50 = 100e^{-0.05268t} \]

\[\Rightarrow e^{-0.05268t} = 0.50 \]

\[\Rightarrow t = -\frac{1}{0.05268}(\log e 0.50) \]

\[\Rightarrow t = 13.157 \text{ hours} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (28) \]

which is the required half-time of the radioactive substance.

XI. CONCLUSION

In this paper, we have successfully developed the Kamal transform for solving the population growth and decay problems. The given applications show that the effectiveness of Kamal transform for solving population growth and decay problems. The proposed scheme can be applied for the continuous compound interest and heat conduction problems.

REFERENCES