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ABSTRACT 
In this paper, it is proved that the existence of unique common fixed point theorem involving for five mappings with 

semi-compatibility, weak compatibility and commutativity on Metric space. This result improves and generalizes 

some known result of Imdad and Khan [7] by using functional expressions. 
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I. INTRODUCTION 
 

The study of common fixed point of mapping satisfying different contraction condition has been a very active field 

of research activity and may be extended to the abstract spaces. Fisher[4,5] generalizes affixed point theorem of 

Jungck[6]. Hicks and Kubicek [1] proved the Mann iteration process in Hilbert space. Pandhare and Waghmode [9] 

proved a common fixed point theorem in Hilbert space. Srinivas .V [11]   proved a common fixed point theorem on 

compatible mappings of type (p) . Shrivastava [12] a proved compatible mapping and common fixed point theorem. 
Gupta [13] Common fixed point theorem for compatible mappings of type (A-1) in complete fuzzy metric space. 

Sessa [10] introduced the notion of weak commutativity which asserts that a pair of self mapping (A,B) on a metric 

space (X, d) is said to be weakly commuting if d(ABx, BAx) ≤ d(Bx, Ax) for all x in X. Motivated by Sessa  [10], 

The notion of compatible mapping was introduced by Jungck [7] , which asserts that a pair self mapping (A,B) of a 

metric space (X, d) is said to be compatible if 
n

lim  (ABxn, BAxn) = 0 whenver 
n

lim  Axn= 
n

lim  Bxn = t X. A 

weakly commuting pair is compatible, but not conversely as demonstrated in Jungck [7]. Lohani and Badshah [8] 

proved some common fixed point theorem for four compatible mappings on Metric space ,Imdad [2] proved a 

unique common fixed point theorem on five mappings.  

  

Definition 1. Let S and T be mappings from a metric space (X,d) into itself. Then mappings S and T are said to be 

compatible if   0,lim 


nn
n

TSxSTxd  whenever  nx  is a sequence in X such that tTxSx n
n

n
n




limlim for 

some Xt . 

 

Definition 2. Let S and T be mappings from a metric space (X,d) into itself. Then mappings S and T are said to be 

weakly compatible if they commute at their coincidence point  that is STx=TSx whenever Sx=Tx, xX. 

 

Definition 3. Let S and T be mappings from a metric space (X,d) into itself. Then mappings S and T are said to be 

semi-compatible if   0,lim 


nn
n

TxSTxd  whenever  nx  is a sequence in X such that tTxSx n
n

n
n




limlim

for some Xt . 

Note that compatible mappings are weakly compatible but weakly compatible mappings are not necessarily 
compatible and clearly the pair (S,T)  is semi-compatible then they are weakly compatible.  

 

In this paper we prove a common fixed point theorem involving five mappings which generalizes earlier result due 

to Imdad and Khan [3] by improving contraction condition besides optimally chosen suitable semi compatible, weak 

compatible and commuting condition on Complete Metric space by using a rational inequality. 



 
[FRTSSDS- June 2018]    ISSN 2348 – 8034 
DOI: 10.5281/zenodo.1293839                                                                                                        Impact Factor- 5.070                                                                                                                                                         

    (C)Global Journal Of Engineering Science And Researches 

 

151 

 

Theorem 1 . Let A, B, S, T and P be self mappings of complete metric space (X,d) satisfying the AB(X)  P(X),  

ST(X)  P(X)  and      XPXSTXAB   and  
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                                        (1) 

for each x, y  X and ,2 ,3 ≥ 0, +223 <1 either if , 

 
(a){AB, P} are semi-compatible, P or AB is continuous and (ST,P) are weakly compatible or  

(b){ST, P} are semi-compatible P or ST is continuous and (AB, P) are weakly compatible. Then AB, ST and P have 

a unique common fixed point. Furthermore if the pairs (A,B),(A,P),(B,P),(S,T),(S,P)and (T,P) are commuting 

mapping then A,B,S,T and P have a unique common fixed point. 

 

Proof. Let x0 be an arbitrary point in X, since AB(X)  P(X) we can find a point x1 in X such that ABx0 = Px1. Also 

since ST(X)  P(X) we can choose a point x2 with STx1 = Ix2, using this argument repeatedly one can construct a 
sequence {zn} such that  

z2n =ABx2n=Px2n+1, z2n+1  =STx2n+1 =Px2n+2 for n = 0, 1, 2, … .  

d(z2n+2,z2n+1)=d(ABx2n+2,STx2n+1)  
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 
1

1 21

32 








k . 

Thus for every n we have, 

   11 , ,   nnnn zzdkzzd   where   
 

1
1 21

32 








k                        (2) 

 

which shows that {zn} is a Cauchy sequence in the Metric space (X,d) and so has a limit point z in X. Hence the 

sequence ABx2n= Px2n+1 and STx2n+1= Px2n+2 which are subsequences also converge to the point z.   

 

Let us now assume that P is continuous so that the sequences {P2x2n} and {PABx2n}converges to Pz and also in view 

of  semi-compatibility of {AB,P}, {ABPx2n} converges to Pz.  

Now put x = Px2n and y = x2n+1 in equation (1), we have 
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so that  zPz   

Now put x=z and y=x2n+1 in equation (1) 
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so that zABz  . 

Since AB(X)  P(X) there always exists a point z’ such that Pz’ = z so that  
STz = ST(Pz’). 

Now put x = x2n and y = z’ in equation (1), 
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so that zSTz ' . 

Hence STz’ = z = Pz ’which shows that z’ is the coincidence point of ST and P.  

Now using the weak compatibility of (ST, P), we have  

STz = ST (Pz’) = P(STz’) = Pz, which shows that z is also a coincidence point of the pair (ST,P). 

 

Now put x = z and y = z in equation (1) 
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so that zSTz  . Hence z = STz = Pz which shows that z is common fixed point of AB, ST and P.  

 

Now suppose that AB is continuous so that the sequence {AB2x2n} and {ABPx2n} converges ABz .Since (AB,P) is 

semi-compatible it follows that {PABx2n} also converges to ABz. 

  

Thus put x = ABx2n and y = x2n+1 in equation (1) we have 
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so that zABz  . 
 

Let there exist z’ in X such that ABz = z= Pz’. 

 Then put x = ABx2n and y = z’ in equation (1) 
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This gives STz’ = z = Pz’ Thus z’ is a coincidence point of (ST,P) since the pair (ST,P) is weakly compatible one 

has STz =ST (Pz’) = Pz which show that STz = Pz. 

Put x = x2n and y = z in equation (1) we have 
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letting nwe have 
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which implies zSTz    

so that STz = z =Pz. 
 

The point z therefore is in range of ST and since ST(X)  P(X) there exists a point z’’ in X such that Pz’’ = z. Thus 
put x = z’’ and y = z in equation (1)  
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Also since (AB,P) are semi-compatible are hence weakly commuting we obtain ABz = Pz = z Thus we have proved 
that z is a common fixed point of AB, ST and P. 

 

If mappings ST or P is continuous instead of AB or P, then the proof that z is a common fixed point of AB,ST and P 

is similar.  
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which implies z = v. 
 

Finally we now show that z is also a common fixed point of the family F={A,B,S,T,P}. When the pairs 

(A,B),(A,P),(B,P),(S,T),(S,P)and (T,P) are commuting pairs. For this event we write,   

Az=A(ABz) = A(BA)z = AB(Az) 

Az = A(Pz) =AP(z)=PA(z) =P(Az) 

Bz = B(ABz) = BA (Bz) = AB (Bz) 

Bz = B(Pz)= BP(z)= PB(z)= P (Bz) 

Sz=S(STz) = S(TS)z = ST(Sz) 

Sz = S(Pz) =SP(z)=PS(z) =P(Sz) 

Tz = T(STz) = TS (Tz) = ST (Tz) 

Tz = T(Pz)= TP(z)= PT(z)= P (Tz) 
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which shows that Az and Bz are common fixed point of (AB,P), yielding thereby Az =Bz =Pz = ABz . where as Sz 

and Tz are common fixed point of (ST,P) it also shows that Sz = z = Tz = Pz =STz.  

Now we need to show that Az = Sz (Bz = Tz) also remains a common fixed point of both the pairs (AB,P) and 

(ST,P). For this  
 

d(Az, Sz) = d(A(BAz),S (TSz) ) = d(AB(Az) ,ST (Sz)) 

   

          
     

               SzPAzPdAzPSzSTdSzPAzABd

SzPAzPd

SzPSzSTdAzPAzABd

,,, 

 ,1 

 ,1 ,
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








                                                               

 

Implies that (1-22)d(Az,Sz) ≤ 0 so that  Az = Sz. 

Similarly it can be show that Bz=Tz, Thus z is the unique common fixed point of A,B, S ,T and P. 

 

Example. Let A, B, S,T and P be self mapping of Hilbert space H. Let X= [0,1] be a closed subset of H. We define 

mapping  

xAx
4

3
 , xBx

9

4
 , xSx

3

2
 , xTx

10

3
  and xPx

3

1
 . 

Clearly     


















3

1
,0

3

1
,0 XPXAB  and     



















3

1
,0

5

1
,0 XPXST  and 

                     



























3

1
,0

5

1
,0

3

1
,0 XPXSTXAB  

so that          


















3

1
,0

5

1
,0 XPXSTXAB . 

Also the pair (AB, P) (ST, P), (A,B), (S,T), (A,P), (B,P), (S,P) and (T,P) are commuting and semi-compatible or 

weak compatible. 

For all x,y in X (x>y) with 
9

1
1   and 

2

1
2   we have , 

yxxyyx

yx

yyxx

yx
3

1

3

1

3

1

5

1

3

1

3

1

3

1

3

1
1

3

1

5

1
1

3

1

3

1

5

1

3

1
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






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























  . 

Using yy
3

1

5

1
  we get ,  

  yxyx
5

1

3

1
2

5

1

3

1
32    

which verifies the contraction condition (1). 

 
Clearly 0 is unique common fixed point of A, B, S, T and P. 
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